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Abstract  

Background. Since 2001 researchers have mainly examined the human genome (G) to discover 

causes of disease despite evidence that G explains relatively little risk. We posit that unexplained 

disease risks are caused by the exposome (E, representing all exposures) and G×E interactions. It 

follows that etiologic research has been hampered by scientists’ continuing reliance on low-tech 

methods to characterize E as contrasted with high-tech omics for characterizing G. 

Objectives: Because exposures are inherently chemical in nature and arise from both 

endogenous and exogenous sources, blood specimens can be used to characterize exposomes. To 

explore the ‘blood exposome’ and its connection to disease we sought human-blood 

concentrations of many chemicals along with their sources, evidence of chronic-disease risks and 

numbers of metabolic pathways. 

Methods: From the literature we obtained human-blood concentrations for 1,561 small 

molecules and metals, derived from foods, drugs, pollutants and endogenous processes. 

Chemical similarities were mapped after weighting by blood concentrations, disease-risk 

citations and numbers of human metabolic pathways. 

Results: Blood concentrations spanned 11 orders of magnitude and were indistinguishable for 

endogenous and food chemicals and drugs while those of pollutants were 1,000-times lower. 

Chemical similarities mapped by disease risks were equally distributed by source categories 

while those mapped by metabolic pathways were dominated by endogenous molecules and 

essential nutrients. 

Conclusions: The complexity of human exposures motivates characterization of the blood 

exposome, which includes all biologically active chemicals, for studies of disease etiology. 

Because most small molecules in blood are not human metabolites, investigations of causal 

pathways should expand beyond the endogenous metabolome. 
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Introduction  

World-wide mortality is dominated by non-communicable diseases, particularly cardiovascular 

disease (29%), cancer (15%) and respiratory diseases (7%) (Lozano et al. 2012). These chronic 

diseases result from the combined effects of the human genome (G) and exposome (E, 

representing all exposures). (Although geneticists use the term ‘environment’ to denote non-

genetic factors, many scientists and the general public equate ‘environment’ with ‘pollution’, 

which represents only one class of exposures. We use the term ‘exposome’ to encompass all 

exogenous and endogenous exposures.) But attribution of risks to G, E and their interaction 

(G×E) has been problematic because of disparities in characterizing genes and exposures 

(Rappaport and Smith 2010; Wild 2005). In fact, sequencing the human genome in 2001 

permitted researchers to comprehensively explore G and its progeny (i.e. genome → 

transcriptome → proteome → metabolome) but did not promote detailed characterization of E, 

which in epidemiological and clinical research still relies on questionnaires, geographical 

information and targeted surveys (Ezzati and Riboli 2013; Lim et al. 2012). Also, the study of 

external and internal exposures (including endogenous chemicals) has focused on a limited 

number of molecules and metals that cannot compare with the resolution of genome-wide-

association studies (GWAS). 

Interestingly, the variation in chronic-disease incidence explained by scores of GWAS has been 

so small that searches are underway for ‘missing heritability’ (Goldstein 2009; Manolio et al. 

2009) and ‘genetic dark matter’ (Galvan et al. 2010; Martin and Chang 2012; Melhem and 

Devlin 2010). Even assuming that a host of rare alleles account for some unexplained phenotypic 

variation (Kraft and Hunter 2009), it is reasonable to posit that E and G×E are the primary causes 

of chronic diseases, as suggested by studies of families and twins (Hemminki et al. 2006; 

Lichtenstein et al. 2000), epigenetics (Gluckman et al. 2008; Gluckman et al. 2010; Smith and 
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Meissner 2013)  and gene-expression profiles  that  change  with lifestyles  and infections  (Chen et  

al. 2012; Preininger et  al. 2013).  In fact, as  shown in Figure  1, half  of  the  50 million global 

deaths  in 2010 were  attributed to a  small  set  of  exposures, dominated by particulate  air pollution 

(combined effects  of  ambient  particles  and household smoke), smoking (active  and passive) and 

diet  (Lim  et  al. 2012).  This  conundrum  - where  scientists  use  high-tech omics  to detect  small  

effects  of  G  but  rely upon low-tech methods  to study potentially large  effects  of  E  and G×E  - has  

produced a very uneven record of etiologic research.   

One  way to level  the  playing field would be  to explore  health impacts  of  E  and G×E  with 

exposome-wide  association studies  (EWAS) (Rappaport  2012)  that  obtain comprehensive, 

quantitative  measurements  of  chemicals  in human biospecimens  (Holmes  et  al. 2008; Ritchie  et  

al. 2010; Z  Wang et  al. 2011).  This  approach recognizes  that  meaningful  exposures  are  mediated 

in the  internal  chemical  environment  (Rappaport  and Smith 2010)  by endogenous  signaling 

molecules, exogenous  chemicals  and reactive  electrophiles  (E-factors) that  communicate  with 

cells, tissues  and organs  via  mutations, post-translational  modifications, enzymes, transcription 

factors  and receptors  (G-factors) (Brodsky and Medzhitov 2009; Liebler 2008; Menon and 

Manning 2013).  Because  blood transports  chemicals  to and from  tissues  and represents  a  

reservoir of  all  endogenous  and exogenous  chemicals  in the  body at  a  given time  (Nicholson et  

al. 2012b), the  blood exposome  offers  a  parsimonious  but  essentially unexplored means  for 

interrogating biologically-relevant exposures (Rappaport 2012).   

Methods  

Sources of data  

To investigate the portion of the blood exposome represented by small molecules and metals, we 

obtained blood concentrations of 1,561 chemicals from samples of healthy human populations 

compiled by the Human Metabolome Database (HMDB 2013) (Wishart et al. 2013) (1,451 
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chemicals) and the  U.S. National  Health and Nutrition Examination Survey (NHANES) (CDC 

2009, 2012, 2013)  (110 chemicals).  Each molecule  or metal  was  assigned one  of  the  following 

four source  categories:  endogenous  chemical  (from  intrinsic  human metabolism, n  = 1,223), food 

chemical  (n  = 195), pollutant  (n  = 94) or drug (n  = 49).  (The  process  for selecting chemicals  is  

described in Supplemental  Material  Table  S1).  To link individual  chemicals  with chronic-disease  

risks  and systems  biology, we  retrieved additional  data  from  the  U.S. National  Center for 

Biotechnology Information (NCBI 2013)  matching to citations  from  the  PubMed database  of  

chronic-disease-risk factors  or the  Biosystems  database  of  human metabolic  pathways  

(Biosystems  2013).  Although modest  in size, these  samples  allowed us  to explore  the  range  of  

human blood concentrations, to test  for differences  in median levels  across  source  categories  and 

to map chemical  similarities  after weighting by blood concentration, disease-risk citations  and 

human metabolic pathways. Relevant data are given in  Supplemental Material, Table S1.  

HMDB  entries  were  from  metabolic  studies  in mostly-Western populations, and included 

endogenous  and food chemicals, drugs  and pollutants, while  NHANES  included only nutrients  

and pollutants  in U.S. populations.  When a  given chemical  was  present  in both databases, 

NHANES  entries  were  used.  If  the  same  chemical  had been reported in more  than one  study or 

year, the  geometric  mean concentration was  used.  Numbers  of  individual  subjects  varied across  

chemicals. Drug concentrations were reported in clinical trials at   therapeutic doses.   

The  chemical  abstract  service  (CAS) registry number(s) was  used as  the  query parameter to 

search the  PubMed database  with medical  subject  headings  (MeSH) annotations  to retrieve  the  

citations  describing epidemiological  studies.  The  search string was  “(blood OR plasma  OR 

serum) AND  ("risk factors"[MeSH  Terms] OR "relative  risk*"  OR "odds  ratio*"  OR "hazard 

ratio*")"'+CAS  number+'"[EC/RN  Number]("journal  article"[pt] NOT  review[pt] NOT  "meta  

analysis"[pt]) (hasabstract[text] AND  "humans"[MeSH  Terms]) english[lang] (neoplasms[mesh] 
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OR diabetes[mesh] OR "cardiovascular diseases"[mesh] OR "Respiratory Tract  

Diseases"[mesh])”.  For retrieval  of  pathway hits, PubChem  identifiers  for each compound were  

searched against  the  NCBI Biosystems  database.  Chemical  similarity maps  were  generated by 

Metamapp (Metamapp 2013).   

Statistical analysis  

Differences in median blood concentrations across source categories were evaluated with 

Kruskal-Wallis tests via SAS for Windows (v.9.3) (SAS Institute, Cary, NC). 

Results  

Blood concentrations  

Cumulative distributions of blood concentrations are shown in Figure 2 for the four sources of 

chemicals. Concentrations ranged from 160 fM to 140 mM, a staggering 11 orders of magnitude. 

Within each category, concentrations covered a 107-fold range. Median blood levels of 

endogenous chemicals (0.94 µM), food chemicals (1.00 µM) and drugs (0.30 µM) were not 

significantly different (P-value = 0.246). In contrast, pollutant concentrations were 1,000 times 

lower (median = 2.4×10-4 µM, P-value <0.0001) and only pollutants with blood levels above the 

median value overlapped with other distributions. 

Chemical-similarity maps  

Endogenous and dietary molecules comprised more than 100 chemical classes, particularly 

lipids, steroids, amino acids, fatty acids and nucleotides (Supplemental Material, Table S1). In 

addition to nutrients and vitamins, food chemicals included such bioactive molecules as 

aflatoxin-B1 (a carcinogen from mold-infected grains and nuts), solanidine (a toxin from 

potatoes), sulforaphane (a DNA-protective agent from cruciferous vegetables), acetaldehyde (a 

mutagen from metabolism of alcohol), genistein (an endocrine-disrupting chemical from soy 
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products) and trimethylamine-N-oxide  (a  suspected cause  of  atherosclerosis  from  metabolism  of  

choline  and carnitine).  Exogenous  pollutants  were  primarily halogenated compounds  - 

trihalomethanes, chlorinated pesticides, perfluorinated compounds, polychlorinated biphenyls  

(PCBs), brominated diphenyl  ethers  and some  chlorinated dioxins  and furans  - and metals, but  

also included a  few  volatile  aromatic  species  (notably benzene) and metabolites  of  nicotine.  This  

diversity is  illustrated in Figure  3A, which maps  the  1,561chemicals  by their structural  

similarities  (Barupal  et  al. 2012), with symbol  sizes  indicating blood concentrations.  

Constellations  of  biochemical  classes  were  populated  largely by endogenous  and food chemicals, 

while  drugs  clustered with aromatic  compounds  (between map locations  designated ‘AN’ and 

‘BD’ in Figure  3A) and pollutants  were  mainly at  map peripheries  (locations  ‘AH’  and ‘AX’, 

respectively).  Metals  and metalloids  originated from  foods  (6 most  abundant:  Na, K, Fe, Ca, P  

and Mg), pollution (6 most abundant: Si, Sr, Ni, Pb, Be and As) and one drug (Li).   

Since  citations  to risk factors  summarize  epidemiologic  and clinical  evidence  associating a  

chemical  with disease  phenotypes, we  found PubMed citations  for 960 searchable  substances  in 

our inventory (only chemicals  with CAS  registry numbers  were  searchable  in PubMed) and 

obtained 19,656 citations  matching 336 (35%) of  these  chemicals.  (Numbers  of  matching 

citations  are  included in  Supplemental  Material,  Table  S1).  The  distribution of  citations  per 

chemical  was  highly skewed, with a  median value  of  7.5 and a  maximum  of  4,499 (cholesterol).  

The  large  numbers  of  citations  per chemical  and positive  skewness  probably reflect  publication 

bias  in hypothesis-driven epidemiologic  studies  and clinical  trials.  Median numbers  of  citations  

varied two-fold across  source  categories  (drugs  = 10, endogenous  = 6, food chemicals  = 13, 

pollutants  = 6;  P-value  = 0.041).  When food chemicals  were  removed, median values  for the  

other categories  were  not  significantly different  (P-value  = 0.307).  This  indicates  that  a  typical  
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food chemical  was  about  twice  as  likely to be  cited as  a  chronic-disease-risk factor than a  

chemical from another category.   

The  chemical-similarity map for these  336 chemicals  is  shown in Figure  3B, where  symbol  size  

reflects  the  number of  citations. This  map shared prominent  clustering patterns  with Figure  3A, 

except  that  individual  lipid molecules  were  largely absent  (lipids  tend to be  reported as  classes  

rather than discrete  molecules  in clinical  and epidemiology studies) and most  endogenous  

molecules  with large  blood concentrations  had few  PubMed citations.  Several  highly-cited 

chemicals  are  familiar biomarkers  of  human diseases  and causal  exposures, e.g. cholesterol  (n  = 

4,449, cardiovascular disease), folic  acid (n  = 595, cancer and neural-tube  defects), lead (n  = 65, 

cardiovascular and neurological  diseases) and cotinine  (n  = 78, smoking-related diseases) plus  

vitamins, hormones  and antioxidants.  Aspirin was  the  most-cited drug (n  = 515) followed by 

atorvastatin (n  = 206).   

Sequencing the  human genome  motivated mapping of  G-centric  molecular pathways  at  multiple  

levels  and made  metabolites  with annotated pathways  desirable  targets  for systems  biology 

(Chen et  al. 2012).  When matching records  from  the  NCBI Biosystems  database  were  retrieved 

for chemicals  in our inventory, at  least  one  human metabolic  pathway had been reported for 658 

of  them  (42%).  (Numbers  of  pathways  are  included in  Supplemental  Material,  Table  S1).  Median 

numbers  of  pathways  varied 6-fold across  sources, with pollutants  being significantly 

understudied (drugs  = 4, endogenous  = 6, food chemicals  = 4, pollutants  = 1;  P-value  < 0.0001).  

The  chemical-similarity map of  these  658 chemicals  is  shown in Figure  3C with symbol  size  

representing the  number of  pathways.  The  largest  numbers  of  pathways  corresponded to purine-

nucleotide  phosphates  (maximum  = 707 for adenosine  triphosphate), amino acids  and 

derivatives, fatty acids  and dietary metals.  In contrast  to prominent  disease-risk citations  that  
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were  distributed more-or-less  evenly across  source  categories  (Figure  3B) chemicals  with many 

pathways were overwhelmingly endogenous molecules and essential nutrients (Figure 3C).   

Because  the  sets  of  PubMed and Biosystems  hits  were  not  completely overlapping, we  repeated 

the  analysis  of  source  categories  for the  267 chemicals  that  had at  least  one  disease-risk citation 

and at  least  one  human metabolic  pathway.  Results  from  this  subset  of  chemicals  were  

essentially the  same  as  for the  complete  datasets.  Median numbers  of  PubMed hits  varied 2.4-

fold across  source  categories  (drugs  = 7, endogenous  = 7, food chemicals  = 17, pollutants  = 9;  P-

value  = 0.0261) but  did not  differ significantly when food chemicals  were  removed (P-value  = 

0.4135).  In contrast, median numbers  of  human-metabolic  pathways  varied 12-fold across  source  

categories  and were  much smaller for drugs  and pollutants  than for endogenous  and food 

chemicals  (drugs  = 4, endogenous  = 11.5, food chemicals  = 12, pollutants  = 1;  P-value  < 

0.0001).   

Discussion  

Discovering causes of disease  

Data summarized in Figure 1 suggest that only about half of the current burden of chronic 

diseases can be attributed to known exposures and motivate more thorough scrutiny of the 

exposome to find unknown causes. This will be challenging due to the remarkable ranges of 

human exposures across sources and chemical classes that are displayed in Figures 2 and 3. Such 

extreme variation suggests that knowledge-driven studies are ill suited for discovering unknown 

causes of chronic diseases. There are simply too many diverse chemicals covering too great a 

concentration range to formulate reasonable hypotheses. We should narrow the list of chemical 

candidates by using EWAS to find discriminating exposures in biospecimens from diseased and 

healthy subjects (Holmes et al. 2008; Patel et al. 2010; Rappaport 2012; Ritchie et al. 2010; Z 

Wang et al. 2011), essentially following the same strategy as GWAS. Once identified, these 
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chemicals  can be  targeted to investigate  sources, causality, disease  mechanisms  and interventions  

(Rappaport  2012).  A  good example  of  this  two-stage  strategy is  given by Hazen and coworkers, 

who linked risks  of  cardiovascular disease  with blood concentrations  of  trimethylamine-N-oxide, 

a  metabolite  of  choline  and carnitine  derived from  microbial/human metabolism  (Koeth et  al. 

2013; Tang et al. 2013; Z Wang et al. 2011).   

Optimally, EWAS  would employ untargeted methods  to compare  blood exposomes  between 

cases  and controls  nested in cohort  studies. Although untargeted high-resolution mass  

spectrometry can detect  more  than 30,000 features  of  small  molecules  in human serum  

(Ivanisevic  et  al. 2013), use  of  untargeted platforms  in our laboratory cannot  reliably measure  

blood concentrations  below  about  0.1 µM  in 50 µl  of  serum. Given the  extraordinary dynamic  

range  of  small  molecules  and metals  (Figure  2), this  suggests  that  untargeted analyses  will  miss  

about  90% of  pollutants  and 30% of  endogenous  and food chemicals, including hormones  (e.g. 

estradiol  and testosterone), carcinogens  (e.g., aflatoxin-B1 and benzene) and endocrine  

disruptors  (e.g., genistein, PCBs  and DDE). Thus, while  increased sensitivity can be  anticipated 

with untargeted mass  spectrometry, EWAS  currently require  a  combination of  untargeted 

(Holmes  et  al. 2008; Ritchie  et  al. 2010; Z  Wang et  al. 2011)  and semi-targeted (Patel  et  al. 

2010)  methods  to quantify exposures.  Also, as  in the  Human Genome  Project  (NHGRI 2013), 

different  laboratories  could address  specific  parts  of  the  exposome  in a  complementary and 

collaborative way.  

Magnitudes of ex posures  

Ranges of blood concentrations varied greatly within and between sources of exposure as shown 

in Figure 2. While we had anticipated that endogenous and food chemicals would have similar 

blood levels, we were surprised to observe the near-perfect overlap of concentrations of these 

chemicals with those of drugs. Such similar cumulative distributions suggest that blood 
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concentrations  of  endogenous  human metabolites  and food chemicals  are  in the  therapeutic  range  

of  pharmacologic  agents.  We  were  also somewhat  surprised to observe  that  blood concentrations  

of  pollutants  were  1,000 times  lower than those  of  chemicals  from  other categories. Such 

disparate  blood levels  across  exposure  sources  awaken arguments  by Ames  and colleagues  that  

natural  toxins  and protective  chemicals  are  consumed in much greater quantities  than synthetic  

chemicals  and, therefore, should be  considered when assessing disease  risks  (Ames  1983; Ames 

et  al. 1987; Ames  et  al. 1990a, b). This  further emphasizes  the  importance  of  EWAS  for 

interrogating all chemicals that can cause chronic diseases.  

Epidemiology and systems biology  

Weighting chemicals by blood concentrations (Figure 3A), epidemiologic (risk-factor) citations 

(Figure 3B) or human metabolic pathways (Figure 3C) altered the appearances of chemical-

similarity maps. Epidemiologic citations downgraded the importance of endogenous molecules 

while upgrading pollutants and drugs, but weighting by numbers of metabolic pathways had the 

opposite effect. These markedly different maps were unanticipated because it is generally 

thought that epidemiology and systems biology work hand-in-glove to elucidate causes and 

mechanisms of disease (Nicholson et al. 2012b). 

Epidemiologists are interested in causes of disease, including genetic factors (G) and exposures 

(E) related to metabolism, diet, pollution, infections, lifestyles and behaviors. When they have 

used blood concentrations to quantify chemical exposures from G, E and G×E, epidemiologists 

have successfully linked chronic diseases to targeted endogenous and exogenous chemicals 

(Figures 1 and 3B). We assumed that chemicals that had been repeatedly associated with chronic 

diseases (Figure 3B) would be logical candidates for exploration of metabolic pathways. 

However, since only 29% of the chemicals in our database with three or more PubMed risk-

factor citations also had a Biosystems hit (i.e., 189/658), this was apparently not the case. 
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Rather, systems biologists focus on metabolic pathways that are under homeostatic control and, 

therefore, presume a G-centric hierarchy that culminates in the endogenous metabolome 

(Nicholson et al. 2012b). From the systems-biology perspective, the most meaningful 

metabolites are those that participate in many pathways (Loscalzo et al. 2007), and Figure 3C 

points to products of energy metabolism and essential nutrients as filling that role. If such 

molecules can be linked to disease, then their concentrations can promote early diagnosis and 

treatment even if causal E and G×E factors are unknown. For example, high concentrations of 

branched-chain amino acids (leucine, isoleucine and valine) predict incipient diabetes and offer 

avenues for treatment (Newgard 2012; TJ Wang et al. 2011). However, the poor track record of 

GWAS in explaining the variation of chronic diseases suggests that systems biologists who look 

only at endogenous metabolites (i.e. molecules produced under human genomic control) will 

miss opportunities to discover causal pathways. Indeed, only 2,626 (6.4%) (ReconX 2013) of the 

41,000 small molecules currently thought to populate the human body (Wishart et al. 2013) are 

products of endogenous human metabolism. 

The microbiome  

When considering G and G×E effects it is important to remember that 90 percent of the 

approximately 1014 cells in the human body actually reside in the gut microbiota (Savage 1977). 

This superorganism contributes ~500,000 microbial protein-coding genes (Qin et al. 2010) 

compared to a human complement of ~20,000 protein-coding genes. Thus human biospecimens 

contain a plethora of bioactive molecules generated from microbial metabolism (Nicholson et al. 

2012a) in addition to chemicals introduced by the diet, drugs, infectious organisms, pollution and 

lifestyle factors (Nicholson and Wilson 2003; Rappaport and Smith 2010). Chemicals produced 

by the microbiota control development and maintenance of the human immune system as well as 

important cell-signaling processes (Nicholson et al. 2012a) and appear to be intimately involved 
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in development of chronic diseases (Blumberg and Powrie 2012; Haiser and Turnbaugh 2012). 

Although research involving microbial contributions to the human exposome is in its infancy, it 

should expand dramatically as the important roles played by the microbiota are recognized in 

disease etiology (Koeth et al. 2013; Ridaura et al. 2013; Tang et al. 2013; Z Wang et al. 2011). 

Internal and external measures of exposure  

To discover unknown exposures that cause disease, we advocate data-driven EWAS to profile 

chemicals in blood from disease cases and controls (Rappaport 2012). Internal measures of 

exposure such as the blood exposome offer advantages for EWAS because they represent all 

sources of chemicals, including those generated inside the body, and blood specimens are often 

archived in prospective cohort studies (Rappaport and Smith 2010). As EWAS discover new 

disease associations, knowledge-driven studies will be needed to curate exposure sources and 

quantify exposure-response relationships - thereby strengthening causal inferences - and to 

suggest interventions (Rappaport 2012). To the extent that important exposures originate outside 

the body, this follow-up will involve exposure scientists, industrial hygienists, food scientists and 

analytical chemists who measure chemicals in air, water and food, as well as biologists who 

evaluate mechanisms of action (Lioy and Rappaport 2011; Rappaport 2011; Scalbert et al. in 

press; Wild 2012). Thus, the process of identifying causal exposures can require measurements 

of chemicals both inside and outside the body across a diverse scientific milieu. 

Limitations  

Because we relied on publically accessible data, our findings and their interpretation are 

conditioned by the chemicals compiled by HMDB and NHANES and by publications and 

metabolic pathways curated through NCBI. Most of the 1,561 chemicals we investigated in 

human blood were derived from foods and endogenous processes because these are major foci of 

HMDB. Most of the pollutants in our database were reported by NHANES. Yet, a roughly equal 
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number of  other pollutants  from  NHANES  were  excluded from  our database  because  they were  

not  detected in most  blood samples  (CDC 2009, 2012, 2013).  If  non-detects  from  NHANES  had 

been included, the  shift  towards  lower blood concentrations  of  pollutants  relative  to chemicals  

from  other sources  would have  been even greater.  We  also recognize  that  some  of  our data  could 

be  biased.  For example, using PubMed citations  to assess  disease  associations  of  particular 

exposures  can introduce  biases  related to prior publications  as  well  as  research priorities  for 

different  diseases, numbers  of  investigators  and journals, etc.  As  noted previously, the  

Biosystems  database  of  human metabolic  pathways  reflects  apparent  biases  favoring chemicals  

that  are  involved in many pathways  regardless  of  disease  associations.  Finally, we  were  unable  to 

investigate  possible  effects  of  chemical  interactions  on disease  risks.  But  despite  these  

limitations, the  vast  diversity and concentration ranges  of  blood chemicals  should be  apparent  as  

should differences  in median blood concentrations  observed across  source  categories  (Figures  2 

and 3).  

Conclusions  

The extreme complexity and dynamic range of the blood exposome (Figures 2 and 3) should 

motivate data-driven studies to discover unknown causes of chronic diseases, regardless of their 

exogenous and endogenous origins (Rappaport 2012) . Candidate exposures can be identified by 

EWAS that compare omic profiles in blood from diseased and healthy subjects. 

The apparent disconnect between chemical-specific disease risks (Figure 3B) and human 

metabolic pathways (Figure 3C) indicates that systems biologists are only marginally engaged in 

elucidating causal disease pathways. We promote a more global approach to systems biology 

(Nicholson and Wilson 2003) that expands beyond the endogenous metabolome to the blood 

exposome, illustrated here by a large sample of circulating small molecules and inorganic 

species. 
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Perhaps  the  most  compelling reason for embracing the  blood exposome  is  the  potential  to  

discover all  chemicals  that  cause  disease  and then to  intervene  so as  to modify exposures  and the  

concomitant  burden of  disease  (Christiani  2011).  The  current  inventory of  small  molecules  and 

metals  associated with chronic  diseases  consists  of  about  300 chemicals  that  have  been targeted 

repeatedly in epidemiologic  and  clinical  studies  (Figure  3B).  With recognition of  their health 

significance, these  chemicals  have  been routinely monitored for clinical  interventions  (e.g. 

cholesterol, folic  acid and vitamins) and  as  regulated  pollutants  (e.g., lead, arsenic, benzene  and  

PCBs).  Yet, further scrutiny of  these  recognized health hazards  adds  little  to our understanding 

of  disease  causation.  If  we  expect  to reduce  the  burden of  chronic  diseases, it  is  time  to find the  

undiscovered health-impairing and health-promoting chemicals to which humans  are  exposed  

(Figure 1), not only small molecules and metals but also proteins and f oreign DNA  and RNA.   
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Figure legends  

Figure 1.  Risk factors for exposures that contribute to chronic diseases.  The chart was compiled 

from WHO estimates of exposures affecting 50 million global deaths in 2010 (Lim et al. 2012).  

Figure 2. Small molecules and metals in human blood.  Each curve represents the cumulative  

distribution of chemical concentrations from a particular source category (pollutants, n  = 94;  

drugs, n  = 49; food chemicals, n  = 195; endogenous chemicals, n  = 1,223). Abbreviations:   

OCDD, 1,2,3,4,6,7,8,9-octachlorooxanthrene; BDE 100, 2,2′,4,4′,6-pentabromodiphenyl ether;  

PCB 170, 2,2',3,3',4,4',5-heptachloro-1,1'-biphenyl; DDE, 1,1-bis-(4-chlorophenyl)-2,2-

dichloroethene.   

Figure 3.  Chemical-similarity maps of small molecules and metals in human blood (Tanimoto 

coefficient  ≥  0.7; symbol color represents the source category).   

A) All chemicals (n  = 1,561; symbol size reflects the blood/serum concentration).  Legend: AA, 

leucotrienes; AB, perfluorinated compounds; AC, alkylamines; AD, pteridines; AE, pyrimidine  

nucleotides; AF, aliphatic amino acids and derivatives; AG, sphingolipids; AH, organo-chlorine  

pesticides; AI, prenol lipids; AJ, sulfur compounds; AK, flavonoids; AL, pyrroles and indoles;  

AM, pyridines; AN, alkaloids; AO, benzoic acids and phenols; AP, eicosanoids; AQ, fatty acids  

and fatty amines; AR, steroids; AS, organic acids; AT, monosaccharides; AU, phosphates; AV, 

alcohols; AW, fatty acid esters and conjugates; AX, polychlorinated biphenyls; AY, simple  

aromatics; AZ, chlorinated dioxins  and furans; BA, sulfates and nitrites/nitrates; BB, purine  

nucleotides; BC, aromatic amino acids and derivatives; BD, benzoic acids and phenols.  

B) Matching chemicals from (A) cited in studies of chronic-disease risks (n  = 336; symbol size  

reflects the number of citations). Legend: 1, Se; 2, nitric oxide; 3, folic acid; 4, vitamin B12; 5,  

metformin; 6, cotinine; 7, Pb; 8, bilirubin; 9, atorvastatin; 10, ascorbic acid;  11, thyroxine; 12, 
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norepinephrine; 13, aspirin; 14, eicosapentaenoic acid; 15, Mg; 16, Ca; 17, Na; 18, uric acid; 19, 

creatinine; 20, L-arginine; 21, homocysteine; 22, L-methionine; 23, L-valine; 24, β-carotene; 25, 

vitamin A; 26, vitamin D3; 27, cholesterol; 28, simvastatin; 29, aldosterone; 30, cortisol; 31, 

testosterone; 32, malondialdehyde; 33, D-glucose; 34, estradiol; 35, PCBs; 36, ethanol.   

C) Matching chemicals from (A) having human metabolic pathways (n  = 658; symbol size  

reflects the number of pathways). Legend: 1, adenosine triphosphate; 2, hydrogen peroxide; 3,  

adenosine diphosphate; 4, guanosine diphosphate; 5, guanosine triphosphate; 6, NADPH; 7, 

cyclic AMP; 8, adenosine monophosphate; 9, NADH; 10, NAD; 11, FAD; 12, Mn; 13, Na; 14,  

Ca; 15, Zn; 16, Mg; 17, K; 18, norepinephrine; 19, epinephrine; 20, L-phenylalanine; 21,  L-

tyrosine; 22, dopamine; 23, palmitic acid; 24, cholesterol; 25, L-glutamic acid; 26, adenine; 27, 

L-aspartic acid; 28, oxoglutaric acid; 29, pyruvic acid; 30, phosphate; 31, pyrophosphate; 32,  

formic acid; 33, uridine 5'-monophosphate; 34, uridine 5'-diphosphate; 35, L-arginine; 36, L-

alanine; 37, L-cysteine; 38, L-serine; 39,arachodonic acid; 40, α-linolenic acid.   
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